IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05724-1.html
   My bibliography  Save this article

Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase

Author

Listed:
  • Byoung-Cheol Lee

    (Weill Cornell Medical College
    Korea Brain Research Institute (KBRI))

  • George Khelashvili

    (Weill Cornell Medical College
    Weill Cornell Medical College)

  • Maria Falzone

    (Weill Cornell Medical College)

  • Anant K. Menon

    (Weill Cornell Medical College)

  • Harel Weinstein

    (Weill Cornell Medical College
    Weill Cornell Medical College)

  • Alessio Accardi

    (Weill Cornell Medical College
    Weill Cornell Medical College
    Weill Cornell Medical College)

Abstract

Members of the TMEM16/ANO family of membrane proteins are Ca2+-activated phospholipid scramblases and/or Cl− channels. A membrane-exposed hydrophilic groove in these proteins serves as a shared translocation pathway for ions and lipids. However, the mechanism by which lipids gain access to and permeate through the groove remains poorly understood. Here, we combine quantitative scrambling assays and molecular dynamic simulations to identify the key steps regulating lipid movement through the groove. Lipid scrambling is limited by two constrictions defined by evolutionarily conserved charged and polar residues, one extracellular and the other near the membrane mid-point. The region between these constrictions is inaccessible to lipids and water molecules, suggesting that the groove is in a non-conductive conformation. A sequence of lipid-triggered reorganizations of interactions between these residues and the permeating lipids propagates from the extracellular entryway to the central constriction, allowing the groove to open and coordinate the headgroups of transiting lipids.

Suggested Citation

  • Byoung-Cheol Lee & George Khelashvili & Maria Falzone & Anant K. Menon & Harel Weinstein & Alessio Accardi, 2018. "Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05724-1
    DOI: 10.1038/s41467-018-05724-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05724-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05724-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria E. Falzone & Zhang Feng & Omar E. Alvarenga & Yangang Pan & ByoungCheol Lee & Xiaolu Cheng & Eva Fortea & Simon Scheuring & Alessio Accardi, 2022. "TMEM16 scramblases thin the membrane to enable lipid scrambling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Zhongjie Ye & Nicola Galvanetto & Leonardo Puppulin & Simone Pifferi & Holger Flechsig & Melanie Arndt & Cesar Adolfo Sánchez Triviño & Michael Palma & Shifeng Guo & Horst Vogel & Anna Menini & Clemen, 2024. "Structural heterogeneity of the ion and lipid channel TMEM16F," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05724-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.