IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05689-1.html
   My bibliography  Save this article

The silicon cycle impacted by past ice sheets

Author

Listed:
  • Jon R. Hawkings

    (School of Geographical Sciences)

  • Jade E. Hatton

    (School of Geographical Sciences)

  • Katharine R. Hendry

    (University of Bristol)

  • Gregory F. Souza

    (ETH Zurich)

  • Jemma L. Wadham

    (School of Geographical Sciences)

  • Ruza Ivanovic

    (University of Leeds)

  • Tyler J. Kohler

    (Charles University)

  • Marek Stibal

    (Charles University)

  • Alexander Beaton

    (University of Southampton Waterfront Campus)

  • Guillaume Lamarche-Gagnon

    (School of Geographical Sciences)

  • Andrew Tedstone

    (School of Geographical Sciences)

  • Mathis P. Hain

    (University of California
    University of Southampton Waterfront Campus)

  • Elizabeth Bagshaw

    (Cardiff University)

  • Jennifer Pike

    (Cardiff University)

  • Martyn Tranter

    (School of Geographical Sciences)

Abstract

Globally averaged riverine silicon (Si) concentrations and isotope composition (δ30Si) may be affected by the expansion and retreat of large ice sheets during glacial−interglacial cycles. Here we provide evidence of this based on the δ30Si composition of meltwater runoff from a Greenland Ice Sheet catchment. Glacier runoff has the lightest δ30Si measured in running waters (−0.25 ± 0.12‰), significantly lower than nonglacial rivers (1.25 ± 0.68‰), such that the overall decline in glacial runoff since the Last Glacial Maximum (LGM) may explain 0.06–0.17‰ of the observed ocean δ30Si rise (0.5–1.0‰). A marine sediment core proximal to Iceland provides further evidence for transient, low-δ30Si meltwater pulses during glacial termination. Diatom Si uptake during the LGM was likely similar to present day due to an expanded Si inventory, which raises the possibility of a feedback between ice sheet expansion, enhanced Si export to the ocean and reduced CO2 concentration in the atmosphere, because of the importance of diatoms in the biological carbon pump.

Suggested Citation

  • Jon R. Hawkings & Jade E. Hatton & Katharine R. Hendry & Gregory F. Souza & Jemma L. Wadham & Ruza Ivanovic & Tyler J. Kohler & Marek Stibal & Alexander Beaton & Guillaume Lamarche-Gagnon & Andrew Ted, 2018. "The silicon cycle impacted by past ice sheets," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05689-1
    DOI: 10.1038/s41467-018-05689-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05689-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05689-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. Patton & A. Hubbard & J. Heyman & N. Alexandropoulou & A. P. E. Lasabuda & A. P. Stroeven & A. M. Hall & M. Winsborrow & D. E. Sugden & J. Kleman & K. Andreassen, 2022. "The extreme yet transient nature of glacial erosion," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Camilla S. Andresen & Nanna B. Karlsson & Fiammetta Straneo & Sabine Schmidt & Thorbjørn J. Andersen & Emily F. Eidam & Anders A. Bjørk & Nicolas Dartiguemalle & Laurence M. Dyke & Flor Vermassen & Id, 2024. "Sediment discharge from Greenland’s marine-terminating glaciers is linked with surface melt," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05689-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.