IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04051-9.html
   My bibliography  Save this article

Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions

Author

Listed:
  • Dongjie Zhu

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Xiangxi Wang

    (Chinese Academy of Sciences)

  • Qianglin Fang

    (Purdue University)

  • James L Etten

    (University of Nebraska)

  • Michael G Rossmann

    (Purdue University)

  • Zihe Rao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Tsinghua University)

  • Xinzheng Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

The Ewald sphere effect is generally neglected when using the Central Projection Theorem for cryo electron microscopy single-particle reconstructions. This can reduce the resolution of a reconstruction. Here we estimate the attainable resolution and report a “block-based” reconstruction method for extending the resolution limit. We find the Ewald sphere effect limits the resolution of large objects, especially large viruses. After processing two real datasets of large viruses, we show that our procedure can extend the resolution for both datasets and can accommodate the flexibility associated with large protein complexes.

Suggested Citation

  • Dongjie Zhu & Xiangxi Wang & Qianglin Fang & James L Etten & Michael G Rossmann & Zihe Rao & Xinzheng Zhang, 2018. "Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04051-9
    DOI: 10.1038/s41467-018-04051-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04051-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04051-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Jia & Ye Xiang, 2023. "Cryo-EM structure of a bacteriophage M13 mini variant," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Guosong Wang & Zhenghui Zha & Pengfei Huang & Hui Sun & Yang Huang & Maozhou He & Tian Chen & Lina Lin & Zhenqin Chen & Zhibo Kong & Yuqiong Que & Tingting Li & Ying Gu & Hai Yu & Jun Zhang & Qingbing, 2022. "Structures of pseudorabies virus capsids," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Qianqian Shao & Irina V. Agarkova & Eric A. Noel & David D. Dunigan & Yunshu Liu & Aohan Wang & Mingcheng Guo & Linlin Xie & Xinyue Zhao & Michael G. Rossmann & James L. Etten & Thomas Klose & Qiangli, 2022. "Near-atomic, non-icosahedrally averaged structure of giant virus Paramecium bursaria chlorella virus 1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Shouwen Du & Ruchao Peng & Wang Xu & Xiaoyun Qu & Yuhang Wang & Jiamin Wang & Letian Li & Mingyao Tian & Yudong Guan & Jigang Wang & Guoqing Wang & Hao Li & Lingcong Deng & Xiaoshuang Shi & Yidan Ma &, 2023. "Cryo-EM structure of severe fever with thrombocytopenia syndrome virus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Rong-Cheng Yu & Feng Yang & Hong-Yan Zhang & Pu Hou & Kang Du & Jie Zhu & Ning Cui & Xudong Xu & Yuxing Chen & Qiong Li & Cong-Zhao Zhou, 2024. "Structure of the intact tail machine of Anabaena myophage A-1(L)," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Zhennan Zhao & Youhua Huang & Congcong Liu & Dongjie Zhu & Shuaixin Gao & Sheng Liu & Ruchao Peng & Ya Zhang & Xiaohong Huang & Jianxun Qi & Catherine C. L. Wong & Xinzheng Zhang & Peiyi Wang & Qiwei , 2023. "Near-atomic architecture of Singapore grouper iridovirus and implications for giant virus assembly," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04051-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.