IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03742-7.html
   My bibliography  Save this article

Giant optical nonlinearities from Rydberg excitons in semiconductor microcavities

Author

Listed:
  • Valentin Walther

    (Aarhus University
    Max Planck Institute for the Physics of Complex Systems)

  • Robert Johne

    (Max Planck Institute for the Physics of Complex Systems)

  • Thomas Pohl

    (Aarhus University
    Max Planck Institute for the Physics of Complex Systems)

Abstract

The realization of exciton polaritons—hybrid excitations of semiconductor quantum well excitons and cavity photons—has been of great technological and scientific significance. In particular, the short-range collisional interaction between excitons has enabled explorations into a wealth of nonequilibrium and hydrodynamical effects that arise in weakly nonlinear polariton condensates. Yet, the ability to enhance optical nonlinearities would enable quantum photonics applications and open up a new realm of photonic many-body physics in a scalable and engineerable solid-state environment. Here we outline a route to such capabilities in cavity-coupled semiconductors by exploiting the giant interactions between excitons in Rydberg states. We demonstrate that optical nonlinearities in such systems can be vastly enhanced by several orders of magnitude and induce nonlinear processes at the level of single photons.

Suggested Citation

  • Valentin Walther & Robert Johne & Thomas Pohl, 2018. "Giant optical nonlinearities from Rydberg excitons in semiconductor microcavities," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03742-7
    DOI: 10.1038/s41467-018-03742-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03742-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03742-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trond I. Andersen & Ryan J. Gelly & Giovanni Scuri & Bo L. Dwyer & Dominik S. Wild & Rivka Bekenstein & Andrey Sushko & Jiho Sung & You Zhou & Alexander A. Zibrov & Xiaoling Liu & Andrew Y. Joe & Kenj, 2022. "Beam steering at the nanosecond time scale with an atomically thin reflector," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03742-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.