IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02721-8.html
   My bibliography  Save this article

Crosstalk in concurrent repeated games impedes direct reciprocity and requires stronger levels of forgiveness

Author

Listed:
  • Johannes G. Reiter

    (Harvard University
    Stanford University School of Medicine)

  • Christian Hilbe

    (IST Austria (Institute of Science and Technology Austria))

  • David G. Rand

    (Yale University)

  • Krishnendu Chatterjee

    (IST Austria (Institute of Science and Technology Austria))

  • Martin A. Nowak

    (Harvard University
    Harvard University)

Abstract

Direct reciprocity is a mechanism for cooperation among humans. Many of our daily interactions are repeated. We interact repeatedly with our family, friends, colleagues, members of the local and even global community. In the theory of repeated games, it is a tacit assumption that the various games that a person plays simultaneously have no effect on each other. Here we introduce a general framework that allows us to analyze “crosstalk” between a player’s concurrent games. In the presence of crosstalk, the action a person experiences in one game can alter the person’s decision in another. We find that crosstalk impedes the maintenance of cooperation and requires stronger levels of forgiveness. The magnitude of the effect depends on the population structure. In more densely connected social groups, crosstalk has a stronger effect. A harsh retaliator, such as Tit-for-Tat, is unable to counteract crosstalk. The crosstalk framework provides a unified interpretation of direct and upstream reciprocity in the context of repeated games.

Suggested Citation

  • Johannes G. Reiter & Christian Hilbe & David G. Rand & Krishnendu Chatterjee & Martin A. Nowak, 2018. "Crosstalk in concurrent repeated games impedes direct reciprocity and requires stronger levels of forgiveness," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02721-8
    DOI: 10.1038/s41467-017-02721-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02721-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02721-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cameron Harwick, 2020. "Inside and Outside Perspectives on Institutions: An Economic Theory of the Noble Lie," Journal of Contextual Economics (JCE) – Schmollers Jahrbuch, Duncker & Humblot, Berlin, vol. 140(1), pages 3-30.
    2. Deming Mao & Xiaoyu Li & Dejun Mu & Dujuan Liu & Chen Chu, 2021. "Separated interactive behaviors promote cooperation in the spatial prisoner’s dilemma game," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(7), pages 1-9, July.
    3. Peter S. Park & Martin A. Nowak & Christian Hilbe, 2022. "Cooperation in alternating interactions with memory constraints," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Parizad Khezri, 2021. "Developing and Validating an Organizational Forgiveness Measure: An Exploratory Factor Analysis Approach," International Journal of Business and Management, Canadian Center of Science and Education, vol. 14(9), pages 150-150, July.
    5. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    6. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2023. "Evolution of cooperation with nonlinear environment feedback in repeated public goods game," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    7. Sun, Chengbin & Luo, Chao, 2020. "Co-evolution of influence-based preferential selection and limited resource with multi-games on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 374(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02721-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.