IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01492-6.html
   My bibliography  Save this article

A conformational switch in initiation factor 2 controls the fidelity of translation initiation in bacteria

Author

Listed:
  • Kelvin Caban

    (Columbia University)

  • Michael Pavlov

    (BMC, Uppsala University)

  • Måns Ehrenberg

    (BMC, Uppsala University)

  • Ruben L. Gonzalez

    (Columbia University)

Abstract

Initiation factor (IF) 2 controls the fidelity of translation initiation by selectively increasing the rate of 50S ribosomal subunit joining to 30S initiation complexes (ICs) that carry an N-formyl-methionyl-tRNA (fMet-tRNAfMet). Previous studies suggest that rapid 50S subunit joining involves a GTP- and fMet-tRNAfMet-dependent “activation” of IF2, but a lack of data on the structure and conformational dynamics of 30S IC-bound IF2 has precluded a mechanistic understanding of this process. Here, using an IF2-tRNA single-molecule fluorescence resonance energy transfer signal, we directly observe the conformational switch that is associated with IF2 activation within 30S ICs that lack IF3. Based on these results, we propose a model of IF2 activation that reveals how GTP, fMet-tRNAfMet, and specific structural elements of IF2 drive and regulate this conformational switch. Notably, we find that domain III of IF2 plays a pivotal, allosteric, role in IF2 activation, suggesting that this domain can be targeted for the development of novel antibiotics.

Suggested Citation

  • Kelvin Caban & Michael Pavlov & Måns Ehrenberg & Ruben L. Gonzalez, 2017. "A conformational switch in initiation factor 2 controls the fidelity of translation initiation in bacteria," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01492-6
    DOI: 10.1038/s41467-017-01492-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01492-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01492-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01492-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.