IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01260-6.html
   My bibliography  Save this article

Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals

Author

Listed:
  • Samuel Temple Reeve

    (Purdue University)

  • Alexis Belessiotis-Richards

    (Imperial College London)

  • Alejandro Strachan

    (Purdue University)

Abstract

Alloy and microstructure optimization have led to impressive improvements in the strength of engineering metals, while the range of Young’s moduli achievable has remained essentially unchanged. This is because stiffness is insensitive to microstructure and bounded by individual components in composites. Here we design ultra-low stiffness in fully dense, nanostructured metals via the stabilization of a mechanically unstable, negative stiffness state of a martensitic alloy by its coherent integration with a compatible, stable second component. Explicit large-scale molecular dynamics simulations of the metamaterials with state of the art potentials confirm the expected ultra-low stiffness while maintaining full strength. We find moduli as low as 2 GPa, a value typical of soft materials and over one order of magnitude lower than either constituent, defying long-standing composite bounds. Such properties are attractive for flexible electronics and implantable devices. Our concept is generally applicable and could significantly enhance materials science design space.

Suggested Citation

  • Samuel Temple Reeve & Alexis Belessiotis-Richards & Alejandro Strachan, 2017. "Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01260-6
    DOI: 10.1038/s41467-017-01260-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01260-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01260-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01260-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.