IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01076-4.html
   My bibliography  Save this article

Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells

Author

Listed:
  • Stefan Semrau

    (Hubrecht Institute–KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht
    Whitehead Institute for Biomedical Research
    Leiden Institute of Physics)

  • Johanna E. Goldmann

    (Whitehead Institute for Biomedical Research)

  • Magali Soumillon

    (Broad Institute
    Harvard University)

  • Tarjei S. Mikkelsen

    (Broad Institute
    Harvard University)

  • Rudolf Jaenisch

    (Whitehead Institute for Biomedical Research
    Massachusetts Institute of Technology)

  • Alexander van Oudenaarden

    (Hubrecht Institute–KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht)

Abstract

Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measure the gene expression dynamics of retinoic acid driven mESC differentiation from pluripotency to lineage commitment, using an unbiased single-cell transcriptomics approach. We find that the exit from pluripotency marks the start of a lineage transition as well as a transient phase of increased susceptibility to lineage specifying signals. Our study reveals several transcriptional signatures of this phase, including a sharp increase of gene expression variability and sequential expression of two classes of transcriptional regulators. In summary, we provide a comprehensive analysis of the exit from pluripotency and lineage commitment at the single cell level, a potential stepping stone to improved lineage manipulation through timing of differentiation cues.

Suggested Citation

  • Stefan Semrau & Johanna E. Goldmann & Magali Soumillon & Tarjei S. Mikkelsen & Rudolf Jaenisch & Alexander van Oudenaarden, 2017. "Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells," Nature Communications, Nature, vol. 8(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01076-4
    DOI: 10.1038/s41467-017-01076-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01076-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01076-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sébastien Durand & Marion Bruelle & Fleur Bourdelais & Bigitha Bennychen & Juliana Blin-Gonthier & Caroline Isaac & Aurélia Huyghe & Sylvie Martel & Antoine Seyve & Christophe Vanbelle & Annie Adrait , 2023. "RSL24D1 sustains steady-state ribosome biogenesis and pluripotency translational programs in embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Rowan D Brackston & Eszter Lakatos & Michael P H Stumpf, 2018. "Transition state characteristics during cell differentiation," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-24, September.
    3. Paraskevi Athanasouli & Martina Balli & Anchel Jaime-Soguero & Annekatrien Boel & Sofia Papanikolaou & Bernard K. Veer & Adrian Janiszewski & Tijs Vanhessche & Annick Francis & Youssef El Laithy & Ant, 2023. "The Wnt/TCF7L1 transcriptional repressor axis drives primitive endoderm formation by antagonizing naive and formative pluripotency," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01076-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.