IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00713-2.html
   My bibliography  Save this article

Optical trapping of otoliths drives vestibular behaviours in larval zebrafish

Author

Listed:
  • Itia A. Favre-Bulle

    (The University of Queensland
    The University of Queensland)

  • Alexander B. Stilgoe

    (The University of Queensland)

  • Halina Rubinsztein-Dunlop

    (The University of Queensland)

  • Ethan K. Scott

    (The University of Queensland
    The University of Queensland)

Abstract

The vestibular system, which detects gravity and motion, is crucial to survival, but the neural circuits processing vestibular information remain incompletely characterised. In part, this is because the movement needed to stimulate the vestibular system hampers traditional neuroscientific methods. Optical trapping uses focussed light to apply forces to targeted objects, typically ranging from nanometres to a few microns across. In principle, optical trapping of the otoliths (ear stones) could produce fictive vestibular stimuli in a stationary animal. Here we use optical trapping in vivo to manipulate 55-micron otoliths in larval zebrafish. Medial and lateral forces on the otoliths result in complementary corrective tail movements, and lateral forces on either otolith are sufficient to cause a rolling correction in both eyes. This confirms that optical trapping is sufficiently powerful and precise to move large objects in vivo, and sets the stage for the functional mapping of the resulting vestibular processing.

Suggested Citation

  • Itia A. Favre-Bulle & Alexander B. Stilgoe & Halina Rubinsztein-Dunlop & Ethan K. Scott, 2017. "Optical trapping of otoliths drives vestibular behaviours in larval zebrafish," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00713-2
    DOI: 10.1038/s41467-017-00713-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00713-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00713-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhikai Liu & David G. C. Hildebrand & Joshua L. Morgan & Yizhen Jia & Nicholas Slimmon & Martha W. Bagnall, 2022. "Organization of the gravity-sensing system in zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Emmanuel Marquez-Legorreta & Lena Constantin & Marielle Piber & Itia A. Favre-Bulle & Michael A. Taylor & Ann S. Blevins & Jean Giacomotto & Dani S. Bassett & Gilles C. Vanwalleghem & Ethan K. Scott, 2022. "Brain-wide visual habituation networks in wild type and fmr1 zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Mia Kvåle Løvmo & Shiyu Deng & Simon Moser & Rainer Leitgeb & Wolfgang Drexler & Monika Ritsch-Marte, 2024. "Ultrasound-induced reorientation for multi-angle optical coherence tomography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Takumi Sugioka & Masashi Tanimoto & Shin-ichi Higashijima, 2023. "Biomechanics and neural circuits for vestibular-induced fine postural control in larval zebrafish," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00713-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.