IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00491-x.html
   My bibliography  Save this article

Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators

Author

Listed:
  • Sangsik Kim

    (Purdue University
    Purdue University
    Purdue University
    Texas Tech University)

  • Kyunghun Han

    (Purdue University
    Purdue University)

  • Cong Wang

    (Purdue University)

  • Jose A. Jaramillo-Villegas

    (Purdue University
    Purdue University
    Universidad Tecnológica de Pereira)

  • Xiaoxiao Xue

    (Purdue University
    Tsinghua University)

  • Chengying Bao

    (Purdue University)

  • Yi Xuan

    (Purdue University
    Purdue University)

  • Daniel E. Leaird

    (Purdue University)

  • Andrew M. Weiner

    (Purdue University
    Purdue University
    Purdue University)

  • Minghao Qi

    (Purdue University
    Purdue University
    Purdue University
    Chinese Academy of Sciences)

Abstract

Kerr nonlinearity-based frequency combs and solitons have been generated from on-chip microresonators. The initiation of the combs requires global or local anomalous dispersion which leads to many limitations, such as material choice, film thickness, and spectral ranges where combs can be generated, as well as fabrication challenges. Using a concentric racetrack-shaped resonator, we show that such constraints can be lifted and resonator dispersion can be engineered to be anomalous over moderately broad bandwidth. We demonstrate anomalous dispersion in a 300 nm thick silicon nitride film, suitable for semiconductor manufacturing but previously thought to result in waveguides with high normal dispersion. Together with a mode-selective, tapered coupling scheme, we generate coherent mode-locked frequency combs. Our method can realize anomalous dispersion for resonators at almost any wavelength and simultaneously achieve material and process compatibility with semiconductor manufacturing.

Suggested Citation

  • Sangsik Kim & Kyunghun Han & Cong Wang & Jose A. Jaramillo-Villegas & Xiaoxiao Xue & Chengying Bao & Yi Xuan & Daniel E. Leaird & Andrew M. Weiner & Minghao Qi, 2017. "Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00491-x
    DOI: 10.1038/s41467-017-00491-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00491-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00491-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaojing Zhang & Keyi Zhong & Xuetong Zhou & Hon Ki Tsang, 2022. "Broadband high-Q multimode silicon concentric racetrack resonators for widely tunable Raman lasers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. J. M. Chavez Boggio & D. Bodenmüller & S. Ahmed & S. Wabnitz & D. Modotto & T. Hansson, 2022. "Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Su-Peng Yu & Erwan Lucas & Jizhao Zang & Scott B. Papp, 2022. "A continuum of bright and dark-pulse states in a photonic-crystal resonator," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00491-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.