IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15885.html
   My bibliography  Save this article

Plastid thylakoid architecture optimizes photosynthesis in diatoms

Author

Listed:
  • Serena Flori

    (Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble)

  • Pierre-Henri Jouneau

    (Laboratoire d'Etudes des Matériaux par Microscopie Avancée, Institut Nanosciences et Cryogénie, Service de Physique des Matériaux et Microstructures, CEA-Grenoble)

  • Benjamin Bailleul

    (Institut de Biologie Physico-Chimique (IBPC), UMR 7141, CNRS and Université Pierre et Marie Curie (UPMC))

  • Benoit Gallet

    (CNRS, UMR 5075 CNRS, CEA, UGA, Institut de Biologie Structurale)

  • Leandro F Estrozi

    (CNRS, UMR 5075 CNRS, CEA, UGA, Institut de Biologie Structurale)

  • Christine Moriscot

    (CNRS, UMR 5075 CNRS, CEA, UGA, Institut de Biologie Structurale)

  • Olivier Bastien

    (Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble)

  • Simona Eicke

    (Plant Biochemistry, ETH Zurich)

  • Alexander Schober

    (University of Konstanz)

  • Carolina Río Bártulos

    (University of Konstanz)

  • Eric Maréchal

    (Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble)

  • Peter G Kroth

    (University of Konstanz)

  • Dimitris Petroutsos

    (Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble)

  • Samuel Zeeman

    (Plant Biochemistry, ETH Zurich)

  • Cécile Breyton

    (CNRS, UMR 5075 CNRS, CEA, UGA, Institut de Biologie Structurale)

  • Guy Schoehn

    (CNRS, UMR 5075 CNRS, CEA, UGA, Institut de Biologie Structurale)

  • Denis Falconet

    (Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble)

  • Giovanni Finazzi

    (Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), CEA-Grenoble)

Abstract

Photosynthesis is a unique process that allows independent colonization of the land by plants and of the oceans by phytoplankton. Although the photosynthesis process is well understood in plants, we are still unlocking the mechanisms evolved by phytoplankton to achieve extremely efficient photosynthesis. Here, we combine biochemical, structural and in vivo physiological studies to unravel the structure of the plastid in diatoms, prominent marine eukaryotes. Biochemical and immunolocalization analyses reveal segregation of photosynthetic complexes in the loosely stacked thylakoid membranes typical of diatoms. Separation of photosystems within subdomains minimizes their physical contacts, as required for improved light utilization. Chloroplast 3D reconstruction and in vivo spectroscopy show that these subdomains are interconnected, ensuring fast equilibration of electron carriers for efficient optimum photosynthesis. Thus, diatoms and plants have converged towards a similar functional distribution of the photosystems although via different thylakoid architectures, which likely evolved independently in the land and the ocean.

Suggested Citation

  • Serena Flori & Pierre-Henri Jouneau & Benjamin Bailleul & Benoit Gallet & Leandro F Estrozi & Christine Moriscot & Olivier Bastien & Simona Eicke & Alexander Schober & Carolina Río Bártulos & Eric Mar, 2017. "Plastid thylakoid architecture optimizes photosynthesis in diatoms," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15885
    DOI: 10.1038/ncomms15885
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15885
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jade A. Ezzedine & Clarisse Uwizeye & Grégory Si Larbi & Gaelle Villain & Mathilde Louwagie & Marion Schilling & Pascal Hagenmuller & Benoît Gallet & Adeline Stewart & Dimitris Petroutsos & Fabienne D, 2023. "Adaptive traits of cysts of the snow alga Sanguina nivaloides unveiled by 3D subcellular imaging," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.