IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15484.html
   My bibliography  Save this article

High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

Author

Listed:
  • Johannes Ullmann

    (Institut für Kernphysik, Technische Universität Darmstadt
    Helmholtz Institut Jena
    Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität)

  • Zoran Andelkovic

    (GSI Helmholtzzentrum für Schwerionenforschung)

  • Carsten Brandau

    (GSI Helmholtzzentrum für Schwerionenforschung
    I.Physikalisches Institut, Justus-Liebig-Universität Gießen)

  • Andreas Dax

    (Paul Scherrer Institut)

  • Wolfgang Geithner

    (GSI Helmholtzzentrum für Schwerionenforschung)

  • Christopher Geppert

    (Institut für Kernphysik, Technische Universität Darmstadt
    Institut für Kernchemie, Johannes Gutenberg-Universität Mainz)

  • Christian Gorges

    (Institut für Kernphysik, Technische Universität Darmstadt)

  • Michael Hammen

    (Institut für Kernchemie, Johannes Gutenberg-Universität Mainz
    Helmholtz Institut Mainz, Johannes Gutenberg-Universität Mainz)

  • Volker Hannen

    (Institut für Kernphysik, Westfälische Wilhelms-Universität Münster)

  • Simon Kaufmann

    (Institut für Kernphysik, Technische Universität Darmstadt)

  • Kristian König

    (Institut für Kernphysik, Technische Universität Darmstadt)

  • Yuri A. Litvinov

    (GSI Helmholtzzentrum für Schwerionenforschung)

  • Matthias Lochmann

    (Institut für Kernphysik, Technische Universität Darmstadt)

  • Bernhard Maaß

    (Institut für Kernphysik, Technische Universität Darmstadt)

  • Johann Meisner

    (Physikalisch-Technische Bundesanstalt)

  • Tobias Murböck

    (Institut für Angewandte Physik, Technische Universität Darmstadt)

  • Rodolfo Sánchez

    (GSI Helmholtzzentrum für Schwerionenforschung)

  • Matthias Schmidt

    (Physikalisch-Technische Bundesanstalt)

  • Stefan Schmidt

    (Institut für Kernphysik, Technische Universität Darmstadt)

  • Markus Steck

    (GSI Helmholtzzentrum für Schwerionenforschung)

  • Thomas Stöhlker

    (Helmholtz Institut Jena
    Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität
    GSI Helmholtzzentrum für Schwerionenforschung)

  • Richard C. Thompson

    (QOLS Group, Imperial College London)

  • Christian Trageser

    (I.Physikalisches Institut, Justus-Liebig-Universität Gießen)

  • Jonas Vollbrecht

    (Institut für Kernphysik, Westfälische Wilhelms-Universität Münster)

  • Christian Weinheimer

    (Institut für Kernphysik, Westfälische Wilhelms-Universität Münster)

  • Wilfried Nörtershäuser

    (Institut für Kernphysik, Technische Universität Darmstadt)

Abstract

Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

Suggested Citation

  • Johannes Ullmann & Zoran Andelkovic & Carsten Brandau & Andreas Dax & Wolfgang Geithner & Christopher Geppert & Christian Gorges & Michael Hammen & Volker Hannen & Simon Kaufmann & Kristian König & Yu, 2017. "High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15484
    DOI: 10.1038/ncomms15484
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15484
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.