IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15349.html
   My bibliography  Save this article

Decoding and reprogramming fungal iterative nonribosomal peptide synthetases

Author

Listed:
  • Dayu Yu

    (College of Chemical Engineering, Northeast Electric Power University
    Utah State University)

  • Fuchao Xu

    (Utah State University)

  • Shuwei Zhang

    (Utah State University)

  • Jixun Zhan

    (Utah State University)

Abstract

Nonribosomal peptide synthetases (NRPSs) assemble a large group of structurally and functionally diverse natural products. While the iterative catalytic mechanism of bacterial NRPSs is known, it remains unclear how fungal NRPSs create products of desired length. Here we show that fungal iterative NRPSs adopt an alternate incorporation strategy. Beauvericin and bassianolide synthetases have the same C1-A1-T1-C2-A2-MT-T2a-T2b-C3 domain organization. During catalysis, C3 and C2 take turns to incorporate the two biosynthetic precursors into the growing depsipeptide chain that swings between T1 and T2a/T2b with C3 cyclizing the chain when it reaches the full length. We reconstruct the total biosynthesis of beauvericin in vitro by reacting C2 and C3 with two SNAC-linked precursors and present a domain swapping approach to reprogramming these enzymes for peptides with altered lengths. These findings highlight the difference between bacterial and fungal NRPS mechanisms and provide a framework for the enzymatic synthesis of non-natural nonribosomal peptides.

Suggested Citation

  • Dayu Yu & Fuchao Xu & Shuwei Zhang & Jixun Zhan, 2017. "Decoding and reprogramming fungal iterative nonribosomal peptide synthetases," Nature Communications, Nature, vol. 8(1), pages 1-11, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15349
    DOI: 10.1038/ncomms15349
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15349
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.