IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15336.html
   My bibliography  Save this article

Design of synthetic epigenetic circuits featuring memory effects and reversible switching based on DNA methylation

Author

Listed:
  • Johannes A. H. Maier

    (Institute of Biochemistry, Faculty of Chemistry, Stuttgart University)

  • Raphael Möhrle

    (Institute of Biochemistry, Faculty of Chemistry, Stuttgart University)

  • Albert Jeltsch

    (Institute of Biochemistry, Faculty of Chemistry, Stuttgart University)

Abstract

Epigenetic systems store information in DNA methylation patterns in a durable but reversible manner, but have not been regularly used in synthetic biology. Here, we designed synthetic epigenetic memory systems using DNA methylation sensitive engineered zinc finger proteins to repress a memory operon comprising the CcrM methyltransferase and a reporter. Triggering by heat, nutrients, ultraviolet irradiation or DNA damaging compounds induces CcrM expression and DNA methylation. In the induced on-state, methylation in the operator of the memory operon prevents zinc finger protein binding leading to positive feedback and permanent activation. Using an mf-Lon protease degradable CcrM variant enables reversible switching. Epigenetic memory systems have numerous potential applications in synthetic biology, including life biosensors, death switches or induction systems for industrial protein production. The large variety of bacterial DNA methyltransferases potentially allows for massive multiplexing of signal storage and logical operations depending on more than one input signal.

Suggested Citation

  • Johannes A. H. Maier & Raphael Möhrle & Albert Jeltsch, 2017. "Design of synthetic epigenetic circuits featuring memory effects and reversible switching based on DNA methylation," Nature Communications, Nature, vol. 8(1), pages 1-10, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15336
    DOI: 10.1038/ncomms15336
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15336
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.