IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14402.html
   My bibliography  Save this article

Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy

Author

Listed:
  • Iban Amenabar

    (CIC nanoGUNE)

  • Simon Poly

    (CIC nanoGUNE
    IFIB - Interfaculty Institute of Biochemistry)

  • Monika Goikoetxea

    (CIC nanoGUNE
    Metallic Surfaces Unit, IK4-CIDETEC)

  • Wiwat Nuansing

    (CIC nanoGUNE)

  • Peter Lasch

    (Robert Koch Institut)

  • Rainer Hillenbrand

    (CIC NanoGUNE and UPV/EHU
    IKERBASQUE, Basque Foundation for Science)

Abstract

Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm−1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine.

Suggested Citation

  • Iban Amenabar & Simon Poly & Monika Goikoetxea & Wiwat Nuansing & Peter Lasch & Rainer Hillenbrand, 2017. "Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14402
    DOI: 10.1038/ncomms14402
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14402
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuezhi Ma & Qiushi Liu & Ning Yu & Da Xu & Sanggon Kim & Zebin Liu & Kaili Jiang & Bryan M. Wong & Ruoxue Yan & Ming Liu, 2021. "6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Ziwei Liu & Jingning Wu & Chen Cai & Bo Yang & Zhi-mei Qi, 2022. "Flexible hyperspectral surface plasmon resonance microscopy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.