IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12550.html
   My bibliography  Save this article

Reaction-induced rheological weakening enables oceanic plate subduction

Author

Listed:
  • Ken-ichi Hirauchi

    (Faculty of Science, Shizuoka University)

  • Kumi Fukushima

    (Graduate School of Integrated Science and Technology, Shizuoka University)

  • Masanori Kido

    (Graduate School of Science, Tohoku University)

  • Jun Muto

    (Graduate School of Science, Tohoku University)

  • Atsushi Okamoto

    (Graduate School of Environmental Studies, Tohoku University)

Abstract

Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the ‘cutoff’ of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets.

Suggested Citation

  • Ken-ichi Hirauchi & Kumi Fukushima & Masanori Kido & Jun Muto & Atsushi Okamoto, 2016. "Reaction-induced rheological weakening enables oceanic plate subduction," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12550
    DOI: 10.1038/ncomms12550
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12550
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaguang Chen & Hanlin Chen & Mingqi Liu & Taras Gerya, 2023. "Vertical tearing of subducting plates controlled by geometry and rheology of oceanic plates," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.