Author
Listed:
- Mariusz Lejman
(Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine)
- Gwenaelle Vaudel
(Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine)
- Ingrid C. Infante
(Laboratoire Structures, Propriétés et Modélisation des Solides, CentraleSupélec, UMR CNRS 8580, Université Paris-Saclay)
- Ievgeniia Chaban
(Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine)
- Thomas Pezeril
(Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine)
- Mathieu Edely
(Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine)
- Guillaume F. Nataf
(Luxembourg Institute of Science and Technology
SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay)
- Mael Guennou
(Luxembourg Institute of Science and Technology)
- Jens Kreisel
(Luxembourg Institute of Science and Technology
Physics and Materials Science Research Unit, University of Luxembourg)
- Vitalyi E. Gusev
(Laboratoire d’Acoustique de l’Université du Maine, UMR CNRS 6613, Université du Maine)
- Brahim Dkhil
(Laboratoire Structures, Propriétés et Modélisation des Solides, CentraleSupélec, UMR CNRS 8580, Université Paris-Saclay)
- Pascal Ruello
(Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine)
Abstract
The ability to generate efficient giga–terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.
Suggested Citation
Mariusz Lejman & Gwenaelle Vaudel & Ingrid C. Infante & Ievgeniia Chaban & Thomas Pezeril & Mathieu Edely & Guillaume F. Nataf & Mael Guennou & Jens Kreisel & Vitalyi E. Gusev & Brahim Dkhil & Pascal , 2016.
"Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics,"
Nature Communications, Nature, vol. 7(1), pages 1-10, November.
Handle:
RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12345
DOI: 10.1038/ncomms12345
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12345. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.