IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12215.html
   My bibliography  Save this article

Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting

Author

Listed:
  • Leiming Chen

    (College of Science, China University of Mining and Technology)

  • Chiu Fan Lee

    (Imperial College London, South Kensington Campus)

  • John Toner

    (University of Oregon
    Max Planck Institute for the Physics of Complex Systems)

Abstract

Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar–Parisi–Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.

Suggested Citation

  • Leiming Chen & Chiu Fan Lee & John Toner, 2016. "Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12215
    DOI: 10.1038/ncomms12215
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12215
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.