IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11905.html
   My bibliography  Save this article

Genetically and functionally defined NTS to PBN brain circuits mediating anorexia

Author

Listed:
  • Carolyn W. Roman

    (University of Washington)

  • Victor A. Derkach

    (University of Washington
    Howard Hughes Medical Institute, University of Washington)

  • Richard D. Palmiter

    (University of Washington
    Howard Hughes Medical Institute, University of Washington)

Abstract

The central nervous system controls food consumption to maintain metabolic homoeostasis. In response to a meal, visceral signals from the gut activate neurons in the nucleus of the solitary tract (NTS) via the vagus nerve. These NTS neurons then excite brain regions known to mediate feeding behaviour, such as the lateral parabrachial nucleus (PBN). We previously described a neural circuit for appetite suppression involving calcitonin gene-related protein (CGRP)-expressing PBN (CGRPPBN) neurons; however, the molecular identity of the inputs to these neurons was not established. Here we identify cholecystokinin (CCK) and noradrenergic, dopamine β-hydroxylase (DBH)-expressing NTS neurons as two separate populations that directly excite CGRPPBN neurons. When these NTS neurons are activated using optogenetic or chemogenetic methods, food intake decreases and with chronic stimulation mice lose body weight. Our optogenetic results reveal that CCK and DBH neurons in the NTS directly engage CGRPPBN neurons to promote anorexia.

Suggested Citation

  • Carolyn W. Roman & Victor A. Derkach & Richard D. Palmiter, 2016. "Genetically and functionally defined NTS to PBN brain circuits mediating anorexia," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11905
    DOI: 10.1038/ncomms11905
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11905
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nilufer Sayar-Atasoy & Connor Laule & Iltan Aklan & Hyojin Kim & Yavuz Yavuz & Tayfun Ates & Ilknur Coban & Fulya Koksalar-Alkan & Jacob Rysted & Debbie Davis & Uday Singh & Muhammed Ikbal Alp & Bayra, 2023. "Adrenergic modulation of melanocortin pathway by hunger signals," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Joseph W. Arthurs & Anna J. Bowen & Richard D. Palmiter & Nathan A. Baertsch, 2023. "Parabrachial tachykinin1-expressing neurons involved in state-dependent breathing control," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.