IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11506.html
   My bibliography  Save this article

Merging rhodium-catalysed C–H activation and hydroamination in a highly selective [4+2] imine/alkyne annulation

Author

Listed:
  • Rajith S. Manan

    (North Dakota State University)

  • Pinjing Zhao

    (North Dakota State University)

Abstract

Catalytic C–H activation and hydroamination represent two important strategies for eco-friendly chemical synthesis with high atom efficiency and reduced waste production. Combining both C–H activation and hydroamination in a cascade process, preferably with a single catalyst, would allow rapid access to valuable nitrogen-containing molecules from readily available building blocks. Here we report a single metal catalyst-based approach for N-heterocycle construction by tandem C–H functionalization and alkene hydroamination. A simple catalyst system of cationic rhodium(I) precursor and phosphine ligand promotes redox-neutral [4+2] annulation between N–H aromatic ketimines and internal alkynes to form multi-substituted 3,4-dihydroisoquinolines (DHIQs) in high chemoselectivity over competing annulation processes, exclusive cis-diastereoselectivity, and distinct regioselectivity for alkyne addition. This study demonstrates the potential of tandem C–H activation and alkene hydrofunctionalization as a general strategy for modular and atom-efficient assembly of six-membered heterocycles with multiple chirality centres.

Suggested Citation

  • Rajith S. Manan & Pinjing Zhao, 2016. "Merging rhodium-catalysed C–H activation and hydroamination in a highly selective [4+2] imine/alkyne annulation," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11506
    DOI: 10.1038/ncomms11506
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11506
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.