IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10361.html
   My bibliography  Save this article

Shaping the nonlinear near field

Author

Listed:
  • Daniela Wolf

    (Experimental Physics III, University of Bayreuth
    Max Planck Institute for Solid State Research)

  • Thorsten Schumacher

    (Experimental Physics III, University of Bayreuth)

  • Markus Lippitz

    (Experimental Physics III, University of Bayreuth)

Abstract

Light scattering at plasmonic nanoparticles and their assemblies has led to a wealth of applications in metamaterials and nano-optics. Although shaping of fields around nanostructures is widely studied, the influence of the field inside the nanostructures is often overlooked. The linear field distribution inside the structure taken to the third power causes third-harmonic generation, a nonlinear optical response of matter. Here we demonstrate by a far field Fourier imaging method how this simple fact can be used to shape complex fields around a single particle alone. We employ this scheme to switch the third-harmonic emission from a single point source to two spatially separated but coherent sources, as in Young’s double-slit assembly. We envision applications as diverse as coherently feeding antenna arrays and optical spectroscopy of spatially extended electronic states.

Suggested Citation

  • Daniela Wolf & Thorsten Schumacher & Markus Lippitz, 2016. "Shaping the nonlinear near field," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10361
    DOI: 10.1038/ncomms10361
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10361
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.