IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8989.html
   My bibliography  Save this article

High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands

Author

Listed:
  • Sara Kühsel

    (Technische Universität Darmstadt)

  • Nico Blüthgen

    (Technische Universität Darmstadt)

Abstract

The resilience of ecosystems depends on the diversity of species and their specific responses to environmental variation. Here we show that the diversity of climatic responses across species contributes to a higher projected resilience of species-rich pollinator communities in real-world ecosystems despite land-use intensification. We determined the thermal niche of 511 pollinator species (flies, bees, beetles and butterflies) in 40 grasslands. Species in intensively used grasslands have broader thermal niches and are also more complementary in their thermal optima. The observed increase in thermal resilience with land-use intensification is mainly driven by the dominant flies that prefer cooler temperatures and compensate for losses of other taxa. Temperature explained 84% of the variation in pollinator activity across species and sites. Given the key role of temperature, quantifying the diversity of thermal responses within functional groups is a promising approach to assess the vulnerability of ecosystems to land-use intensification and climate change.

Suggested Citation

  • Sara Kühsel & Nico Blüthgen, 2015. "High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8989
    DOI: 10.1038/ncomms8989
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8989
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.