IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7834.html
   My bibliography  Save this article

Radiation-mode optical microscopy on the growth of graphene

Author

Listed:
  • Tomo-o Terasawa

    (School of Science, The University of Tokyo)

  • Koichiro Saiki

    (School of Science, The University of Tokyo
    Graduate School of Frontier Sciences, The University of Tokyo)

Abstract

Chemical vapour deposition (CVD) growth of graphene has attracted much attention, aiming at the mass production of large-area and high-quality specimens. To optimize the growth condition, CVD grown graphene is conventionally characterized after synthesis. Real-time observation during graphene growth enables us to understand the growth mechanism and control the growth more easily. Here we report the optical microscope observation of the CVD growth of graphene in real time by focusing the radiation emitted from the growing graphene, which we call ‘radiation-mode optical microscopy’. We observe the growth and shrinkage of graphene in response to the switching on and off of the methane supply. Analysis of the growth feature reveals that the attachment and detachment of carbon precursors are the rate-determining factor in the CVD growth of graphene. We expect radiation-mode optical microscopy to be applicable to the other crystal growth at high temperatures in various atmospheres.

Suggested Citation

  • Tomo-o Terasawa & Koichiro Saiki, 2015. "Radiation-mode optical microscopy on the growth of graphene," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7834
    DOI: 10.1038/ncomms7834
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7834
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.