IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7578.html
   My bibliography  Save this article

Thermal conductance of metal–diamond interfaces at high pressure

Author

Listed:
  • Gregory T. Hohensee

    (Materials Research Laboratory, University of Illinois at Urbana-Champaign)

  • R.B. Wilson

    (Materials Research Laboratory, University of Illinois at Urbana-Champaign)

  • David G. Cahill

    (Materials Research Laboratory, University of Illinois at Urbana-Champaign)

Abstract

The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two-phonon processes. The high pressures achievable in a diamond anvil cell (DAC) can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. Here we report time-domain thermoreflectance measurements of metal–diamond interface thermal conductance up to 50 GPa in the DAC for Pb, Au0.95Pd0.05, Pt and Al films deposited on type 1A natural [100] and type 2A synthetic [110] diamond anvils. In all cases, the thermal conductances increase weakly or saturate to similar values at high pressure. Our results suggest that anharmonic conductance at metal–diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon.

Suggested Citation

  • Gregory T. Hohensee & R.B. Wilson & David G. Cahill, 2015. "Thermal conductance of metal–diamond interfaces at high pressure," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7578
    DOI: 10.1038/ncomms7578
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7578
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.