IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7444.html
   My bibliography  Save this article

Beating beats mixing in heterodyne detection schemes

Author

Listed:
  • G.J. Verbiest

    (JARA-FIT and II. Institute of Physics, RWTH Aachen University)

  • M.J. Rost

    (Huygens-Kamerlingh Onnes Laboratory, Leiden University)

Abstract

Heterodyne detection schemes are widely used to detect and analyse high-frequency signals, which are unmeasurable with conventional techniques. It is the general conception that the heterodyne signal is generated only by mixing and that beating can be fully neglected, as it is a linear effect that, therefore, cannot produce a heterodyne signal. Deriving a general analytical theory, we show, in contrast, that both beating and mixing are crucial to explain the heterodyne signal generation. Beating even dominates the heterodyne signal, if the nonlinearity of the mixing element (mixer) is of higher order than quadratic. The specific characteristic of the mixer determines its sensitivity for beating. We confirm our results with both a full numerical simulation and an experiment using heterodyne force microscopy, which represents a model system with a highly non-quadratic mixer. As quadratic mixers are the exception, many results of previously reported heterodyne measurements may need to be reconsidered.

Suggested Citation

  • G.J. Verbiest & M.J. Rost, 2015. "Beating beats mixing in heterodyne detection schemes," Nature Communications, Nature, vol. 6(1), pages 1-5, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7444
    DOI: 10.1038/ncomms7444
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7444
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.