Author
Listed:
- Zhihai Li
(Temple University
Present Address: Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA)
- Manuel Smeu
(Northwestern University)
- Arnaud Rives
(CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse)
- Valérie Maraval
(CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse)
- Remi Chauvin
(CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse)
- Mark A. Ratner
(Northwestern University)
- Eric Borguet
(Temple University)
Abstract
α-Graphyne, a carbon-expanded version of graphene (‘carbo-graphene’) that was recently evidenced as an alternative zero-gap semiconductor, remains a theoretical material. Nevertheless, using specific synthesis methods, molecular units of α-graphyne (‘carbo-benzene’ macrocycles) can be inserted between two anilinyl (4-NH2-C6H4)-anchoring groups that allow these fragments to form molecular junctions between gold electrodes. Here, electrical measurements by the scanning tunnelling microscopy (STM) break junction technique and electron transport calculations are carried out on such a carbo-benzene, providing unprecedented single molecule conductance values: 106 nS through a 1.94-nm N–N distance, essentially 10 times the conductance of a shorter nanographenic hexabenzocoronene analogue. Deleting a C4 edge of the rigid C18 carbo-benzene circuit results in a flexible ‘carbo-butadiene’ molecule that has a conductance 40 times lower. Furthermore, carbo-benzene junctions exhibit field-effect transistor behaviour when an electrochemical gate potential is applied, opening the way for device applications. All the results are interpreted on the basis of theoretical calculations.
Suggested Citation
Zhihai Li & Manuel Smeu & Arnaud Rives & Valérie Maraval & Remi Chauvin & Mark A. Ratner & Eric Borguet, 2015.
"Towards graphyne molecular electronics,"
Nature Communications, Nature, vol. 6(1), pages 1-9, May.
Handle:
RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7321
DOI: 10.1038/ncomms7321
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7321. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.