IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7164.html
   My bibliography  Save this article

The dual role of coherent twin boundaries in hydrogen embrittlement

Author

Listed:
  • Matteo Seita

    (Massachusetts Institute of Technology)

  • John P. Hanson

    (Massachusetts Institute of Technology)

  • Silvija Gradečak

    (Massachusetts Institute of Technology)

  • Michael J. Demkowicz

    (Massachusetts Institute of Technology)

Abstract

Hydrogen embrittlement (HE) causes engineering alloys to fracture unexpectedly, often at considerable economic or environmental cost. Inaccurate predictions of component lifetimes arise from inadequate understanding of how alloy microstructure affects HE. Here we investigate hydrogen-assisted fracture of a Ni-base superalloy and identify coherent twin boundaries (CTBs) as the microstructural features most susceptible to crack initiation. This is a surprising result considering the renowned beneficial effect of CTBs on mechanical strength and corrosion resistance of many engineering alloys. Remarkably, we also find that CTBs are resistant to crack propagation, implying that hydrogen-assisted crack initiation and propagation are governed by distinct physical mechanisms in Ni-base alloys. This finding motivates a re-evaluation of current lifetime models in light of the dual role of CTBs. It also indicates new paths to designing materials with HE-resistant microstructures.

Suggested Citation

  • Matteo Seita & John P. Hanson & Silvija Gradečak & Michael J. Demkowicz, 2015. "The dual role of coherent twin boundaries in hydrogen embrittlement," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7164
    DOI: 10.1038/ncomms7164
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7164
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.