IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms10107.html
   My bibliography  Save this article

Interplay between plasmon and single-particle excitations in a metal nanocluster

Author

Listed:
  • Jie Ma

    (Lawrence Berkeley National Laboratory)

  • Zhi Wang

    (Lawrence Berkeley National Laboratory)

  • Lin-Wang Wang

    (Lawrence Berkeley National Laboratory)

Abstract

Plasmon-generated hot carriers are used in photovoltaic or photochemical applications. However, the interplays between the plasmon and single-particle excitations in nanosystems have not been theoretically addressed using ab initio methods. Here we show such interplays in a Ag55 nanocluster using real-time time-dependent density functional theory simulations. We find that the disappearance of the zero-frequency peak in the Fourier transform of the band-to-band transition coefficient is a hallmark of the plasmon. We show the importance of the d-states for hot-carrier generations. If the single-particle d-to-s excitations are resonant to the plasmon frequency, the majority of the plasmon energy will be converted into hot carriers, and the overall hot-carrier generation is enhanced by the plasmon; if such resonance does not exist, we observe an intriguing Rabi oscillation between the plasmon and hot carriers. Phonons play a minor role in plasmonic dynamics in such small systems. This study provides guidance on improving plasmonic applications.

Suggested Citation

  • Jie Ma & Zhi Wang & Lin-Wang Wang, 2015. "Interplay between plasmon and single-particle excitations in a metal nanocluster," Nature Communications, Nature, vol. 6(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10107
    DOI: 10.1038/ncomms10107
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10107
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.