Author
Listed:
- Francesco Pagliano
(COBRA Research Institute, Eindhoven University of Technology)
- YongJin Cho
(COBRA Research Institute, Eindhoven University of Technology)
- Tian Xia
(COBRA Research Institute, Eindhoven University of Technology)
- Frank van Otten
(COBRA Research Institute, Eindhoven University of Technology)
- Robert Johne
(COBRA Research Institute, Eindhoven University of Technology
Max-Planck-Institute for the Physics of Complex Systems)
- Andrea Fiore
(COBRA Research Institute, Eindhoven University of Technology)
Abstract
Single excitons in semiconductor microcavities represent a solid state and scalable platform for cavity quantum electrodynamics, potentially enabling an interface between flying (photon) and static (exciton) quantum bits in future quantum networks. While both single-photon emission and the strong coupling regime have been demonstrated, further progress has been hampered by the inability to control the coherent evolution of the cavity quantum electrodynamics system in real time, as needed to produce and harness charge–photon entanglement. Here using the ultrafast electrical tuning of the exciton energy in a photonic crystal diode, we demonstrate the dynamic control of the coupling of a single exciton to a photonic crystal cavity mode on a sub-nanosecond timescale, faster than the natural lifetime of the exciton. This opens the way to the control of single-photon waveforms, as needed for quantum interfaces, and to the real-time control of solid-state cavity quantum electrodynamics systems.
Suggested Citation
Francesco Pagliano & YongJin Cho & Tian Xia & Frank van Otten & Robert Johne & Andrea Fiore, 2014.
"Dynamically controlling the emission of single excitons in photonic crystal cavities,"
Nature Communications, Nature, vol. 5(1), pages 1-6, December.
Handle:
RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6786
DOI: 10.1038/ncomms6786
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6786. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.