IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6391.html
   My bibliography  Save this article

Spin–orbital dynamics in a system of polar molecules

Author

Listed:
  • Sergey V. Syzranov

    (University of Colorado)

  • Michael L. Wall

    (JILA, NIST, University of Colorado)

  • Victor Gurarie

    (University of Colorado)

  • Ana Maria Rey

    (JILA, NIST, University of Colorado)

Abstract

Spin–orbit coupling in solids normally originates from the electron motion in the electric field of the crystal. It is key to understanding a variety of spin-transport and topological phenomena, such as Majorana fermions and recently discovered topological insulators. Implementing and controlling spin–orbit coupling is thus highly desirable and could open untapped opportunities for the exploration of unique quantum physics. Here we show that dipole–dipole interactions can produce an effective spin–orbit coupling in two-dimensional ultracold polar molecule gases. This spin–orbit coupling generates chiral excitations with a non-trivial Berry phase 2π. These excitations, which we call chirons, resemble low-energy quasiparticles in bilayer graphene and emerge regardless of the quantum statistics and for arbitrary ratios of kinetic to interaction energies. Chirons manifest themselves in the dynamics of the spin density profile, spin currents and spin coherences, even for molecules pinned in a deep optical lattice and should be observable in current experiments.

Suggested Citation

  • Sergey V. Syzranov & Michael L. Wall & Victor Gurarie & Ana Maria Rey, 2014. "Spin–orbital dynamics in a system of polar molecules," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6391
    DOI: 10.1038/ncomms6391
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6391
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.