IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6347.html
   My bibliography  Save this article

Predicting commuter flows in spatial networks using a radiation model based on temporal ranges

Author

Listed:
  • Yihui Ren

    (University of Notre Dame)

  • Mária Ercsey-Ravasz

    (Faculty of Physics, Babes-Bolyai University)

  • Pu Wang

    (School of Traffic and Transportation Engineering, Central South University)

  • Marta C. González

    (Massachusetts Institute of Technology)

  • Zoltán Toroczkai

    (University of Notre Dame)

Abstract

Understanding network flows such as commuter traffic in large transportation networks is an ongoing challenge due to the complex nature of the transportation infrastructure and human mobility. Here we show a first-principles based method for traffic prediction using a cost-based generalization of the radiation model for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events.

Suggested Citation

  • Yihui Ren & Mária Ercsey-Ravasz & Pu Wang & Marta C. González & Zoltán Toroczkai, 2014. "Predicting commuter flows in spatial networks using a radiation model based on temporal ranges," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6347
    DOI: 10.1038/ncomms6347
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6347
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.