IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6297.html
   My bibliography  Save this article

Disproving the Peres conjecture by showing Bell nonlocality from bound entanglement

Author

Listed:
  • Tamás Vértesi

    (Institute for Nuclear Research, Hungarian Academy of Sciences, P.O. Box 51)

  • Nicolas Brunner

    (Université de Genève)

Abstract

Quantum entanglement has a central role in many areas of physics. To grasp the essence of this phenomenon, it is fundamental to understand how different manifestations of entanglement relate to each other. In 1999, Peres conjectured that Bell nonlocality is equivalent to distillability of entanglement. The intuition of Peres was that the non-classicality of an entangled state, as witnessed via Bell inequality violation, implies that pure entanglement can be distilled from this state, hence making it useful for quantum information protocols. Subsequently, the Peres conjecture was shown to hold true in several specific cases, and became a central open question in quantum information theory. Here we disprove the Peres conjecture by showing that an undistillable bipartite entangled state—a bound entangled state—can violate a Bell inequality. Hence Bell nonlocality implies neither entanglement distillability, nor non-positivity under partial transposition. This clarifies the relation between three fundamental aspects of entanglement.

Suggested Citation

  • Tamás Vértesi & Nicolas Brunner, 2014. "Disproving the Peres conjecture by showing Bell nonlocality from bound entanglement," Nature Communications, Nature, vol. 5(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6297
    DOI: 10.1038/ncomms6297
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6297
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.