IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6240.html
   My bibliography  Save this article

FAK transduces extracellular forces that orient the mitotic spindle and control tissue morphogenesis

Author

Listed:
  • Nicoletta I. Petridou

    (Laboratory of Developmental Biology and BioImaging, University of Cyprus, University Ave 1)

  • Paris A. Skourides

    (Laboratory of Developmental Biology and BioImaging, University of Cyprus, University Ave 1)

Abstract

Spindle orientation is critical for proper morphogenesis of organs and tissues as well as for the maintenance of tissue morphology. Although significant progress has been made in understanding the mechanisms linking the cell cortex to the spindle and the well-documented role that extracellular forces play in spindle orientation, how such forces are transduced to the cortex remains poorly understood. Here we report that focal adhesion kinase (FAK) is necessary for correct spindle orientation and as a result, indispensable for proper epithelial morphogenesis in the vertebrate embryo. We show that FAK’s role in spindle orientation is dependent on its ability to localize at focal adhesions and its interaction with paxillin, but is kinase activity independent. Finally, we present evidence that FAK is required for external force-induced spindle reorientation, suggesting that FAK’s involvement in this process stems from a role in the transduction of external forces to the cell cortex.

Suggested Citation

  • Nicoletta I. Petridou & Paris A. Skourides, 2014. "FAK transduces extracellular forces that orient the mitotic spindle and control tissue morphogenesis," Nature Communications, Nature, vol. 5(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6240
    DOI: 10.1038/ncomms6240
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6240
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.