IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6158.html
   My bibliography  Save this article

Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators

Author

Listed:
  • Zenghui Wang

    (Case School of Engineering, Case Western Reserve University)

  • Jaesung Lee

    (Case School of Engineering, Case Western Reserve University)

  • Philip X. -L. Feng

    (Case School of Engineering, Case Western Reserve University)

Abstract

High-order and multiple modes in high-frequency micro/nanomechanical resonators are attractive for empowering signal processing and sensing with multi-modalities, yet many challenges remain in identifying and manipulating these modes, and in developing constitutive materials and structures that efficiently support high-order modes. Here we demonstrate high-frequency multimode silicon carbide microdisk resonators and spatial mapping of the intrinsic Brownian thermomechanical vibrations, up to the ninth flexural mode, with displacement sensitivities of ~7−14 fm Hz−1/2. The microdisks are made in a 500-nm-carbide on 500-nm-oxide thin-film technology that facilitates ultrasensitive motion detection via scanning laser interferometry with high spectral and spatial resolutions. Mapping of these thermomechanical vibrations vividly visualizes the shapes and textures of high-order Brownian motions in the microdisks. Measurements on devices with varying dimensions provide deterministic information for precisely identifying the mode sequence and characteristics, and for examining mode degeneracy, spatial asymmetry and other effects, which can be exploited for encoding information with increasing complexity.

Suggested Citation

  • Zenghui Wang & Jaesung Lee & Philip X. -L. Feng, 2014. "Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators," Nature Communications, Nature, vol. 5(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6158
    DOI: 10.1038/ncomms6158
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6158
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.