Author
Listed:
- Shanshan Pang
(Davis School of Gerontology, University of Southern California)
- Dana A. Lynn
(Davis School of Gerontology, University of Southern California
Dornsife College of Letters, Arts, and Sciences, University of Southern California)
- Jacqueline Y. Lo
(Davis School of Gerontology, University of Southern California
Dornsife College of Letters, Arts, and Sciences, University of Southern California)
- Jennifer Paek
(Davis School of Gerontology, University of Southern California)
- Sean P. Curran
(Davis School of Gerontology, University of Southern California
Dornsife College of Letters, Arts, and Sciences, University of Southern California
Keck School of Medicine, University of Southern California)
Abstract
Mechanisms that coordinate different metabolic pathways, such as glucose and lipid, have been recognized. However, a potential interaction between amino acid and lipid metabolism remains largely elusive. Here we show that during starvation of Caenorhabditis elegans, proline catabolism is coupled with lipid metabolism by SKN-1. Mutation of alh-6, a conserved proline catabolic enzyme, accelerates fat mobilization, enhances the expression of genes involved in fatty acid oxidation and reduces survival in response to fasting. This metabolic coordination is mediated by the activation of the transcription factor SKN-1/Nrf2, possibly due to the accumulation of the alh-6 substrate P5C, and also requires the transcriptional co-regulator MDT-15. Constitutive activation of SKN-1 induces a similar transcriptional response, which protects animals from fat accumulation when fed a high carbohydrate diet. In human cells, an orthologous alh-6 enzyme, ALDH4A1, is also linked to the activity of Nrf2, the human orthologue of SKN-1, and regulates the expression of lipid metabolic genes. Our findings identify a link between proline catabolism and lipid metabolism, and uncover a physiological role for SKN-1 in metabolism.
Suggested Citation
Shanshan Pang & Dana A. Lynn & Jacqueline Y. Lo & Jennifer Paek & Sean P. Curran, 2014.
"SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation,"
Nature Communications, Nature, vol. 5(1), pages 1-8, December.
Handle:
RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6048
DOI: 10.1038/ncomms6048
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6048. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.