Author
Listed:
- John G. Gibbons
(Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health)
- Alan T. Branco
(Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health)
- Shoukai Yu
(Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health)
- Bernardo Lemos
(Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health)
Abstract
Ribosomes are essential intracellular machines composed of proteins and RNA molecules. The DNA sequences (rDNA) encoding ribosomal RNAs (rRNAs) are tandemly repeated and give origin to the nucleolus. Here we develop a computational method for estimating rDNA dosage (copy number) and mitochondrial DNA abundance using whole-genome short-read DNA sequencing. We estimate these attributes across hundreds of human genomes and their association with global gene expression. The analyses uncover abundant variation in rDNA dosage that is coupled with the expression of hundreds of functionally coherent gene sets. These include associations with genes coding for chromatin components that target the nucleolus, including CTCF and HP1β. Finally, the data show an inverse association between rDNA dosage and mitochondrial DNA abundance that is manifested across genotypes. Our findings uncover a novel and cryptic source of hypervariable genomic diversity with global regulatory consequences (ribosomal eQTL) in humans. The variation provides a mechanism for cellular homeostasis and for rapid and reversible adaptation.
Suggested Citation
John G. Gibbons & Alan T. Branco & Shoukai Yu & Bernardo Lemos, 2014.
"Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans,"
Nature Communications, Nature, vol. 5(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5850
DOI: 10.1038/ncomms5850
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5850. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.