IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5400.html
   My bibliography  Save this article

Water-induced correlation between single ions imaged at the solid–liquid interface

Author

Listed:
  • Maria Ricci

    (Ecole Polytechnique Fédérale de Lausanne, (EPFL))

  • Peter Spijker

    (COMP Centre of Excellence, Aalto University)

  • Kislon Voïtchovsky

    (Ecole Polytechnique Fédérale de Lausanne, (EPFL)
    Durham University)

Abstract

When immersed into water, most solids develop a surface charge, which is neutralized by an accumulation of dissolved counterions at the interface. Although the density distribution of counterions perpendicular to the interface obeys well-established theories, little is known about counterions’ lateral organization at the surface of the solid. Here we show, by using atomic force microscopy and computer simulations, that single hydrated metal ions can spontaneously form ordered structures at the surface of homogeneous solids in aqueous solutions. The structures are laterally stabilized only by water molecules with no need for specific interactions between the surface and the ions. The mechanism, studied here for several systems, is controlled by the hydration landscape of both the surface and the adsorbed ions. The existence of discrete ion domains could play an important role in interfacial phenomena such as charge transfer, crystal growth, nanoscale self-assembly and colloidal stability.

Suggested Citation

  • Maria Ricci & Peter Spijker & Kislon Voïtchovsky, 2014. "Water-induced correlation between single ions imaged at the solid–liquid interface," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5400
    DOI: 10.1038/ncomms5400
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5400
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giada Franceschi & Pavel Kocán & Andrea Conti & Sebastian Brandstetter & Jan Balajka & Igor Sokolović & Markus Valtiner & Florian Mittendorfer & Michael Schmid & Martin Setvín & Ulrike Diebold, 2023. "Resolving the intrinsic short-range ordering of K+ ions on cleaved muscovite mica," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.