IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5311.html
   My bibliography  Save this article

Direct experimental determination of onset of electron–electron interactions in gap opening of zigzag graphene nanoribbons

Author

Listed:
  • Y. Y. Li

    (University of Wisconsin)

  • M. X. Chen

    (University of Wisconsin)

  • M. Weinert

    (University of Wisconsin)

  • L. Li

    (University of Wisconsin)

Abstract

Nanoribbons are model systems for studying nanoscale effects in graphene. For ribbons with zigzag edges, tunable bandgaps have been predicted due to coupling of spin-polarized edge states, which have yet to be systematically demonstrated experimentally. Here we synthesize zigzag nanoribbons using Fe nanoparticle-assisted hydrogen etching of epitaxial graphene/SiC(0001) in ultrahigh vacuum. We observe two gaps in their local density of states by scanning tunnelling spectroscopy. For ribbons wider than 3 nm, gaps up to 0.39 eV are found independent of width, consistent with standard density functional theory calculations. Ribbons narrower than 3 nm, however, exhibit much larger gaps that scale inversely with width, supporting quasiparticle corrections to the calculated gap. These results provide direct experimental confirmation of electron–electron interactions in gap opening in zigzag nanoribbons, and reveal a critical width of 3 nm for its onset. Our findings demonstrate that practical tunable bandgaps can be realized experimentally in zigzag nanoribbons.

Suggested Citation

  • Y. Y. Li & M. X. Chen & M. Weinert & L. Li, 2014. "Direct experimental determination of onset of electron–electron interactions in gap opening of zigzag graphene nanoribbons," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5311
    DOI: 10.1038/ncomms5311
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5311
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5311?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.