IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5234.html
   My bibliography  Save this article

SUMO1 modification stabilizes CDK6 protein and drives the cell cycle and glioblastoma progression

Author

Listed:
  • Anita C. Bellail

    (Montreal Neurological Institute and Hospital, McGill University)

  • Jeffrey J. Olson

    (Emory University School of Medicine)

  • Chunhai Hao

    (Montreal Neurological Institute & Hospital, McGill University)

Abstract

Ubiquitination governs oscillation of cyclin-dependent kinase (CDK) activity through a periodic degradation of cyclins for orderly cell cycle progression; however, the mechanism that maintains the constant CDK protein levels throughout the cell cycle remains unclear. Here we show that CDK6 is modified by small ubiquitin-like modifier-1 (SUMO1) in glioblastoma, and that CDK6 SUMOylation stabilizes the protein and drives the cell cycle for the cancer development and progression. CDK6 is also a substrate of ubiquitin; however, CDK6 SUMOylation at Lys 216 blocks its ubiquitination at Lys 147 and inhibits the ubiquitin-mediated CDK6 degradation. Throughout the cell cycle, CDK1 phosphorylates the SUMO-specific enzyme, ubiquitin-conjugating enzyme9 (UBC9) that in turn mediates CDK6 SUMOylation during mitosis; CDK6 remains SUMOylated in G1 phase and drives the cell cycle through G1/S transition. Thus, SUMO1–CDK6 conjugation constitutes a mechanism of cell cycle control and inhibition of this SUMOylation pathway may provide a strategy for treatment of glioblastoma.

Suggested Citation

  • Anita C. Bellail & Jeffrey J. Olson & Chunhai Hao, 2014. "SUMO1 modification stabilizes CDK6 protein and drives the cell cycle and glioblastoma progression," Nature Communications, Nature, vol. 5(1), pages 1-14, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5234
    DOI: 10.1038/ncomms5234
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5234
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.