IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5221.html
   My bibliography  Save this article

Development of oculomotor circuitry independent of hox3 genes

Author

Listed:
  • Leung-Hang Ma

    (New York University Langone Medical Center)

  • Charlotte L. Grove

    (New York University Langone Medical Center)

  • Robert Baker

    (New York University Langone Medical Center)

Abstract

Hox genes have been shown to be essential in vertebrate neural circuit formation and their depletion has resulted in homeotic transformations with neuron loss and miswiring. Here we quantifiy four eye movements in the zebrafish mutant valentino and hox3 knockdowns, and find that contrary to the classical model, oculomotor circuits in hindbrain rhombomeres 5–6 develop and function independently of hox3 genes. All subgroups of oculomotor neurons are present, as well as their input and output connections. Ectopic connections are also established, targeting two specific subsets of horizontal neurons, and the resultant novel eye movements coexists with baseline behaviours. We conclude that the high expression of hox3 genes in rhombomeres 5–6 serves to prevent aberrant neuronal identity and behaviours, but does not appear to be necessary for a comprehensive assembly of functional oculomotor circuits.

Suggested Citation

  • Leung-Hang Ma & Charlotte L. Grove & Robert Baker, 2014. "Development of oculomotor circuitry independent of hox3 genes," Nature Communications, Nature, vol. 5(1), pages 1-12, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5221
    DOI: 10.1038/ncomms5221
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5221
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.