Author
Listed:
- Huanchen Wang
(Inositol Signaling Group, National Institute of Environmental Health Sciences, National Institutes of Health)
- Eugene F. DeRose
(Nuclear Magnetic Resonance Group, National Institute of Environmental Health Sciences, National Institutes of Health)
- Robert E. London
(Nuclear Magnetic Resonance Group, National Institute of Environmental Health Sciences, National Institutes of Health)
- Stephen B. Shears
(Inositol Signaling Group, National Institute of Environmental Health Sciences, National Institutes of Health)
Abstract
Inositol trisphosphate kinases (IP3Ks) and inositol hexakisphosphate kinases (IP6Ks) each regulate specialized signalling activities by phosphorylating either InsP3 or InsP6 respectively. The molecular basis for these different kinase activities can be illuminated by a structural description of IP6K. Here we describe the crystal structure of an Entamoeba histolytica hybrid IP6K/IP3K, an enzymatic parallel to a ‘living fossil’. Through molecular modelling and mutagenesis, we extrapolated our findings to human IP6K2, which retains vestigial IP3K activity. Two structural elements, an α-helical pair and a rare, two-turn 310 helix, together forge a substrate-binding pocket with an open clamshell geometry. InsP6 forms substantial contacts with both structural elements. Relative to InsP6, enzyme-bound InsP3 rotates 55° closer to the α-helices, which provide most of the protein’s interactions with InsP3. These data reveal the molecular determinants of IP6K activity, and suggest an unusual evolutionary trajectory for a primordial kinase that could have favored efficient bifunctionality, before propagation of separate IP3Ks and IP6Ks.
Suggested Citation
Huanchen Wang & Eugene F. DeRose & Robert E. London & Stephen B. Shears, 2014.
"IP6K structure and the molecular determinants of catalytic specificity in an inositol phosphate kinase family,"
Nature Communications, Nature, vol. 5(1), pages 1-12, September.
Handle:
RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5178
DOI: 10.1038/ncomms5178
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5178. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.