IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4916.html
   My bibliography  Save this article

Mid-range Ca2+ signalling mediated by functional coupling between store-operated Ca2+ entry and IP3-dependent Ca2+ release

Author

Listed:
  • Raphaël Courjaret

    (Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, PO Box 24144)

  • Khaled Machaca

    (Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, PO Box 24144)

Abstract

The versatility and universality of Ca2+ signals stem from the breadth of their spatial and temporal dynamics. Spatially, Ca2+ signalling is well studied in the microdomain scale, close to a Ca2+ channel, and at the whole-cell level. However, little is known about how local Ca2+ signals are regulated to specifically activate spatially distant effectors without a global Ca2+ rise. Here we show that an intricate coupling between the inositol 1,4,5 trisphosphate (IP3) receptor, SERCA pump and store-operated Ca2+ entry (SOCE) allows for efficient mid-range Ca2+ signalling. Ca2+ flowing through SOCE is taken up into the ER lumen by the SERCA pump, only to be re-released by IP3Rs to activate distal Ca2+-activated Cl− channels (CaCCs). This CaCC regulation contributes to setting the membrane potential of the cell. Hence functional coupling between SOCE, SERCA and IP3R limits local Ca2+ diffusion and funnels Ca2+ through the ER lumen to activate a spatially separate Ca2+ effector.

Suggested Citation

  • Raphaël Courjaret & Khaled Machaca, 2014. "Mid-range Ca2+ signalling mediated by functional coupling between store-operated Ca2+ entry and IP3-dependent Ca2+ release," Nature Communications, Nature, vol. 5(1), pages 1-12, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4916
    DOI: 10.1038/ncomms4916
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4916
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.