IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4654.html
   My bibliography  Save this article

Gut microbiome of the Hadza hunter-gatherers

Author

Listed:
  • Stephanie L. Schnorr

    (Plant Foods in Hominin Dietary Ecology Research Group, Max Planck Institute for Evolutionary Anthropology)

  • Marco Candela

    (University of Bologna)

  • Simone Rampelli

    (University of Bologna)

  • Manuela Centanni

    (University of Bologna)

  • Clarissa Consolandi

    (Institute of Biomedical Technologies, Italian National Research Council)

  • Giulia Basaglia

    (University of Bologna)

  • Silvia Turroni

    (University of Bologna)

  • Elena Biagi

    (University of Bologna)

  • Clelia Peano

    (Institute of Biomedical Technologies, Italian National Research Council)

  • Marco Severgnini

    (Institute of Biomedical Technologies, Italian National Research Council)

  • Jessica Fiori

    (University of Bologna)

  • Roberto Gotti

    (University of Bologna)

  • Gianluca De Bellis

    (Institute of Biomedical Technologies, Italian National Research Council)

  • Donata Luiselli

    (Geological and Environmental Sciences, University of Bologna)

  • Patrizia Brigidi

    (University of Bologna)

  • Audax Mabulla

    (College of Arts and Social Sciences, University of Dar es Salaam)

  • Frank Marlowe

    (University of Cambridge)

  • Amanda G. Henry

    (Plant Foods in Hominin Dietary Ecology Research Group, Max Planck Institute for Evolutionary Anthropology)

  • Alyssa N. Crittenden

    (Metabolism, Anthropometry, and Nutrition Laboratory, University of Nevada)

Abstract

Human gut microbiota directly influences health and provides an extra means of adaptive potential to different lifestyles. To explore variation in gut microbiota and to understand how these bacteria may have co-evolved with humans, here we investigate the phylogenetic diversity and metabolite production of the gut microbiota from a community of human hunter-gatherers, the Hadza of Tanzania. We show that the Hadza have higher levels of microbial richness and biodiversity than Italian urban controls. Further comparisons with two rural farming African groups illustrate other features unique to Hadza that can be linked to a foraging lifestyle. These include absence of Bifidobacterium and differences in microbial composition between the sexes that probably reflect sexual division of labour. Furthermore, enrichment in Prevotella, Treponema and unclassified Bacteroidetes, as well as a peculiar arrangement of Clostridiales taxa, may enhance the Hadza’s ability to digest and extract valuable nutrition from fibrous plant foods.

Suggested Citation

  • Stephanie L. Schnorr & Marco Candela & Simone Rampelli & Manuela Centanni & Clarissa Consolandi & Giulia Basaglia & Silvia Turroni & Elena Biagi & Clelia Peano & Marco Severgnini & Jessica Fiori & Rob, 2014. "Gut microbiome of the Hadza hunter-gatherers," Nature Communications, Nature, vol. 5(1), pages 1-12, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4654
    DOI: 10.1038/ncomms4654
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4654
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Albanese & Carlotta De Filippo & Duccio Cavalieri & Claudio Donati, 2015. "Explaining Diversity in Metagenomic Datasets by Phylogenetic-Based Feature Weighting," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-18, March.
    2. Jim Parker & Claire O’Brien & Jason Hawrelak & Felice L. Gersh, 2022. "Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    3. Jean-Sebastien Gounot & Minghao Chia & Denis Bertrand & Woei-Yuh Saw & Aarthi Ravikrishnan & Adrian Low & Yichen Ding & Amanda Hui Qi Ng & Linda Wei Lin Tan & Yik-Ying Teo & Henning Seedorf & Niranjan, 2022. "Genome-centric analysis of short and long read metagenomes reveals uncharacterized microbiome diversity in Southeast Asians," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Claudia Sala & Enrico Giampieri & Silvia Vitali & Paolo Garagnani & Daniel Remondini & Armando Bazzani & Claudio Franceschi & Gastone C Castellani, 2020. "Gut microbiota ecology: Biodiversity estimated from hybrid neutral-niche model increases with health status and aging," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-23, October.
    5. Fiona B. Tamburini & Dylan Maghini & Ovokeraye H. Oduaran & Ryan Brewster & Michaella R. Hulley & Venesa Sahibdeen & Shane A. Norris & Stephen Tollman & Kathleen Kahn & Ryan G. Wagner & Alisha N. Wade, 2022. "Short- and long-read metagenomics of urban and rural South African gut microbiomes reveal a transitional composition and undescribed taxa," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Ruchi Shroff & Carla Ramos Cortés, 2020. "The Biodiversity Paradigm: Building Resilience for Human and Environmental Health," Development, Palgrave Macmillan;Society for International Deveopment, vol. 63(2), pages 172-180, December.
    7. Gertrude Ecklu-Mensah & Candice Choo-Kang & Maria Gjerstad Maseng & Sonya Donato & Pascal Bovet & Bharathi Viswanathan & Kweku Bedu-Addo & Jacob Plange-Rhule & Prince Oti Boateng & Terrence E. Forrest, 2023. "Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Jake M. Robinson & Jacob G. Mills & Martin F. Breed, 2018. "Walking Ecosystems in Microbiome-Inspired Green Infrastructure: An Ecological Perspective on Enhancing Personal and Planetary Health," Challenges, MDPI, vol. 9(2), pages 1-15, November.
    9. Daniele Conversi, 2021. "Exemplary Ethical Communities. A New Concept for a Livable Anthropocene," Sustainability, MDPI, vol. 13(10), pages 1-17, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.