Author
Listed:
- Mirco Kolarczik
(Institut für Optik und Atomare Physik, Technische Universität Berlin)
- Nina Owschimikow
(Institut für Optik und Atomare Physik, Technische Universität Berlin)
- Julian Korn
(Institut für Theoretische Physik, Technische Universität Berlin)
- Benjamin Lingnau
(Institut für Theoretische Physik, Technische Universität Berlin)
- Yücel Kaptan
(Institut für Optik und Atomare Physik, Technische Universität Berlin)
- Dieter Bimberg
(Institut für Festkörperphysik, Technische Universität Berlin)
- Eckehard Schöll
(Institut für Theoretische Physik, Technische Universität Berlin)
- Kathy Lüdge
(Institut für Theoretische Physik, Technische Universität Berlin)
- Ulrike Woggon
(Institut für Optik und Atomare Physik, Technische Universität Berlin)
Abstract
Coherence in light–matter interaction is a necessary ingredient if light is used to control the quantum state of a material system. Coherent effects are firmly associated with isolated systems kept at low temperature. The exceedingly fast dephasing in condensed matter environments, in particular at elevated temperatures, may well erase all coherent information in the material at timescales shorter than a laser excitation pulse. Here we show for an ensemble of semiconductor quantum dots that even in the presence of ultrafast dephasing, for suitably designed condensed matter systems quantum-coherent effects are robust enough to be observable at room temperature. Our conclusions are based on an analysis of the reshaping an ultrafast laser pulse undergoes on propagation through a semiconductor quantum dot amplifier. We show that this pulse modification contains the signature of coherent light–matter interaction and can be controlled by adjusting the population of the quantum dots via electrical injection.
Suggested Citation
Mirco Kolarczik & Nina Owschimikow & Julian Korn & Benjamin Lingnau & Yücel Kaptan & Dieter Bimberg & Eckehard Schöll & Kathy Lüdge & Ulrike Woggon, 2013.
"Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature,"
Nature Communications, Nature, vol. 4(1), pages 1-7, December.
Handle:
RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3953
DOI: 10.1038/ncomms3953
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3953. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.