IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3878.html
   My bibliography  Save this article

Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds

Author

Listed:
  • Lena Veit

    (Animal Physiology, Institute of Neurobiology, University of Tübingen)

  • Andreas Nieder

    (Animal Physiology, Institute of Neurobiology, University of Tübingen)

Abstract

Despite the lack of a layered neocortex and fundamental differences in endbrain organization in birds compared with mammals, intelligent species evolved from both vertebrate classes. Among birds, corvids show exceptional cognitive flexibility. Here we explore the neuronal foundation of corvid cognition by recording single-unit activity from an association area known as the nidopallium caudolaterale (NCL) while carrion crows make flexible rule-guided decisions, a hallmark of executive control functions. The most prevalent activity in NCL represents the behavioural rules, while abstracting over sample images and sensory modalities of the rule cues. Rule coding is weaker in error trials, thus predicting the crows’ behavioural decisions. This suggests that the abstraction of general principles may be an important function of the NCL, mirroring the function of primate prefrontal cortex. These findings emphasize that intelligence in vertebrates does not necessarily rely on a neocortex but can be realized in endbrain circuitries that developed independently via convergent evolution.

Suggested Citation

  • Lena Veit & Andreas Nieder, 2013. "Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3878
    DOI: 10.1038/ncomms3878
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3878
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maximilian E. Kirschhock & Andreas Nieder, 2022. "Number selective sensorimotor neurons in the crow translate perceived numerosity into number of actions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.