Author
Listed:
- Kristoffer S. Winther
(Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University)
- Ditlev E. Brodersen
(Centre for mRNP Biogenesis and Metabolism, Aarhus University)
- Alistair K. Brown
(Faculty of Health and Life Sciences, Northumbria University)
- Kenn Gerdes
(Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University)
Abstract
The highly persistent and often lethal human pathogen, Mycobacterium tuberculosis contains at least 88 toxin–antitoxin genes. More than half of these encode VapC PIN domain endoribonucleases that inhibit cell growth by unknown mechanisms. Here we show that VapC20 of M. tuberculosis inhibits translation by cleavage of the Sarcin–Ricin loop (SRL) of 23S ribosomal RNA at the same position where Sarcin and other eukaryotic ribotoxins cleave. Toxin-inhibited cells can be rescued by the expression of the antitoxin, thereby raising the possibility that vapC20 contributes to the extreme persistence exhibited by M. tuberculosis. VapC20 cleavage is inhibited by mutations in the SRL that flank the cleavage site but not by changes elsewhere in the loop. Disruption of the SRL stem abolishes cleavage; however, further mutations that restore the SRL stem structure restore cleavage, revealing that the structure rather than the exact sequence of the SRL is important for this activity.
Suggested Citation
Kristoffer S. Winther & Ditlev E. Brodersen & Alistair K. Brown & Kenn Gerdes, 2013.
"VapC20 of Mycobacterium tuberculosis cleaves the Sarcin–Ricin loop of 23S rRNA,"
Nature Communications, Nature, vol. 4(1), pages 1-9, December.
Handle:
RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3796
DOI: 10.1038/ncomms3796
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3796. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.