IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3788.html
   My bibliography  Save this article

MEIOB exhibits single-stranded DNA-binding and exonuclease activities and is essential for meiotic recombination

Author

Listed:
  • Mengcheng Luo

    (Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine)

  • Fang Yang

    (Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine)

  • N. Adrian Leu

    (Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine)

  • Jessica Landaiche

    (Chicago College of Osteopathic Medicine, Midwestern University)

  • Mary Ann Handel

    (The Jackson Laboratory)

  • Ricardo Benavente

    (Biocenter of the University of Würzburg)

  • Sophie La Salle

    (Chicago College of Osteopathic Medicine, Midwestern University)

  • P. Jeremy Wang

    (Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine)

Abstract

Meiotic recombination enables the reciprocal exchange of genetic material between parental homologous chromosomes, and ensures faithful chromosome segregation during meiosis in sexually reproducing organisms. This process relies on the complex interaction of DNA repair factors and many steps remain poorly understood in mammals. Here we report the identification of MEIOB, a meiosis-specific protein, in a proteomics screen for novel meiotic chromatin-associated proteins in mice. MEIOB contains an OB domain with homology to one of the RPA1 OB folds. MEIOB binds to single-stranded DNA and exhibits 3′–5′ exonuclease activity. MEIOB forms a complex with RPA and with SPATA22, and these three proteins co-localize in foci that are associated with meiotic chromosomes. Strikingly, chromatin localization and stability of MEIOB depends on SPATA22 and vice versa. Meiob-null mouse mutants exhibit a failure in meiosis and sterility in both sexes. Our results suggest that MEIOB is required for meiotic recombination and chromosomal synapsis.

Suggested Citation

  • Mengcheng Luo & Fang Yang & N. Adrian Leu & Jessica Landaiche & Mary Ann Handel & Ricardo Benavente & Sophie La Salle & P. Jeremy Wang, 2013. "MEIOB exhibits single-stranded DNA-binding and exonuclease activities and is essential for meiotic recombination," Nature Communications, Nature, vol. 4(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3788
    DOI: 10.1038/ncomms3788
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3788
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masaru Ito & Asako Furukohri & Kenichiro Matsuzaki & Yurika Fujita & Atsushi Toyoda & Akira Shinohara, 2023. "FIGNL1 AAA+ ATPase remodels RAD51 and DMC1 filaments in pre-meiotic DNA replication and meiotic recombination," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Mengwen Hu & Yu-Han Yeh & Yasuhisa Munakata & Hironori Abe & Akihiko Sakashita & So Maezawa & Miguel Vidal & Haruhiko Koseki & Neil Hunter & Richard M. Schultz & Satoshi H. Namekawa, 2022. "PRC1-mediated epigenetic programming is required to generate the ovarian reserve," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.