IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3641.html
   My bibliography  Save this article

Separation of a functional deubiquitylating module from the SAGA complex by the proteasome regulatory particle

Author

Listed:
  • Sungsu Lim

    (Korea Advanced Institute of Science and Technology)

  • Jaechan Kwak

    (Korea Advanced Institute of Science and Technology)

  • Minhoo Kim

    (Korea Advanced Institute of Science and Technology)

  • Daeyoup Lee

    (Korea Advanced Institute of Science and Technology)

Abstract

Gene expression is an intricate process tightly linked from gene activation to the nuclear export of mRNA. Recent studies have indicated that the proteasome is essential for gene expression regulation. The proteasome regulatory particle binds to the SAGA complex and affects transcription in an ATP-dependent manner. Here we report that a specific interaction between the proteasomal ATPase, Rpt2p and Sgf73p of the SAGA complex leads to the dissociation of the H2Bub1-deubiquitylating module (herein designated the Sgf73-DUBm) from SAGA both in vitro and in vivo. We show that the localization of the Sgf73-DUBm on chromatin is perturbed in rpt2-1, a strain of Saccharomyces cerevisiae that is specifically defective in the Rpt2p-Sgf73p interaction. The rpt2-1 mutant also exhibits impaired localization of the TREX-2 and MEX67-MTR2 complexes and is defective in mRNA export. Our findings collectively demonstrate that the proteasome-mediated remodelling of the SAGA complex is a prerequisite for proper mRNA export.

Suggested Citation

  • Sungsu Lim & Jaechan Kwak & Minhoo Kim & Daeyoup Lee, 2013. "Separation of a functional deubiquitylating module from the SAGA complex by the proteasome regulatory particle," Nature Communications, Nature, vol. 4(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3641
    DOI: 10.1038/ncomms3641
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3641
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.