IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3419.html
   My bibliography  Save this article

Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom

Author

Listed:
  • Akira Oka

    (Atmosphere and Ocean Research Institute, University of Tokyo)

  • Yoshihiro Niwa

    (Graduate School of Science, University of Tokyo)

Abstract

Vertical mixing in the ocean is a key driver of the global ocean thermohaline circulation, one of the most important factors controlling past and future climate change. Prior observational and theoretical studies have focused on intense tidal mixing near the sea bottom (near-field mixing). However, ocean general circulation models that employ a parameterization of near-field mixing significantly underestimate the strength of the Pacific thermohaline circulation. Here we demonstrate that tidally induced mixing away from the sea bottom (far-field mixing) is essential in controlling the Pacific thermohaline circulation. Via the addition of far-field mixing to a widely used tidal parameterization, we successfully simulate the Pacific thermohaline circulation. We also propose that far-field mixing is indispensable for explaining the presence of the world ocean’s oldest water in the eastern North Pacific Ocean. Our findings suggest that far-field mixing controls ventilation of the deep Pacific Ocean, a process important for ocean carbon and biogeochemical cycles.

Suggested Citation

  • Akira Oka & Yoshihiro Niwa, 2013. "Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3419
    DOI: 10.1038/ncomms3419
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3419
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.