Author
Listed:
- Peter Rickhaus
(University of Basel)
- Romain Maurand
(University of Basel)
- Ming-Hao Liu
(Institut für Theoretische Physik, Universität Regensburg)
- Markus Weiss
(University of Basel)
- Klaus Richter
(Institut für Theoretische Physik, Universität Regensburg)
- Christian Schönenberger
(University of Basel)
Abstract
The low-energy electronic excitations in graphene are described by massless Dirac fermions that have a linear dispersion relation. Taking advantage of this ‘optics-like’ electron dynamics, generic optical elements like lenses and wave guides have been proposed for electrons in graphene. Tuning of these elements relies on the ability to adjust the carrier concentration in defined areas. However, the combination of ballistic transport and complex gating remains challenging. Here we report on the fabrication and characterization of suspended graphene p–n junctions. By local gating, resonant cavities can be defined, leading to complex Fabry–Pérot interferences. The observed conductance oscillations account for quantum interference of electrons propagating ballistically over distances exceeding 1 μm. Visibility of the interferences is demonstrated to be enhanced by Klein collimation at the p–n interface. This finding paves the way to more complex gate-controlled ballistic graphene devices and brings electron optics in graphene closer to reality.
Suggested Citation
Peter Rickhaus & Romain Maurand & Ming-Hao Liu & Markus Weiss & Klaus Richter & Christian Schönenberger, 2013.
"Ballistic interferences in suspended graphene,"
Nature Communications, Nature, vol. 4(1), pages 1-6, December.
Handle:
RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3342
DOI: 10.1038/ncomms3342
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3342. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.